
[Kaur, 2(9): September, 2013] ISSN: 2277-9655
Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2260-2263]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
A Review on Software Reliability

Damanjit Kaur*1, Inderpal Singh2

*1,2 Department Computer Science and Engineering, DAV Institute of Engineering and Technology,
Jalandhar (Pb.), India

damanjitaulakh@gmail.com
Abstract

 Software reliability signifies the probability that software in a pre-defined condition executes its tasks
without malfunctioning for a specified duration. It may be regarded as a component of software quality. Unlike
software quality, however, it concentrates on the functionality of the software and disregards such issues as
ergonomics of software products, development economics, etc. unless they constitute functional attributes of the
software product.
To most project and software development managers, reliability is equated to correctness, that is, they look to testing
and the number of “bugs” found and fixed. While finding and fixing bugs discovered in testing is necessary to
assure reliability, a better way is to develop a robust, high quality product through all of the stages of the software
lifecycle. That is, the reliability of the delivered code is related to the quality of all of the processes and products of
software development; the requirements documentation, the code, test plans, and testing.

Keywords: Software reliability, software quality, bugs, test plans, and testing.

Introduction
In order to express the reliability of a software

product quantitatively, first, the product itself must be
“measured”. For this purpose, the abstraction of
measurement has to be removed. This can be achieved by
defining certain measures, or metrics, about software
product and its development process. Once reliability
metrics are defined, it is wise to question if it is possible
to determine and improve the reliability of software with
a system based on these metrics.

Software reliability is comprised of three
activities:
1. Error prevention
2. Fault detection and removal
3. Measurements to maximize reliability, specifically
measures that support the first two activities.
Defect: A product anomaly. Examples include such
things as (1) omissions and imperfections found during
early life cycle phases and (2) faults contained in
software sufficiently mature for test or operation.
Fault: (1) An accidental condition that causes a
functional unit to fail to perform its required function. (2)
A manifestation of an error in software. A fault, if
encountered, may cause a failure. It is synonymous with
‘bug’.
Failure: (1) The termination of the ability of a functional
unit to perform its required function. (2) An event in
which a system or system component does not perform a

required function within specified limits. A failure may
be produced when a fault is encountered.
Error: Human action that results in software containing
a fault. Examples include omission of misinterpretation
of user requirements in a software specification, incorrect
translation, or omission of a requirement in the design
specification.
Measure: A quantitative assessment of the degree to
which a software product or process possesses a given
attribute.

Assessment of Software Reliability

Apart from classical hardware reliability,
software reliability has rather different nature [2, 3, 4].
While the reliability of hardware continues to change
even after the product is delivered, the reliability of
software is improved throughout the development
process until the product is delivered.

Another major difference between software
reliability and hardware reliability is that software
reliability is not a function of how frequent that specific
software is used; whereas hardware is subject to wear out
[4,5]. Also, because software is rather conceptual,
documentation is considered as an integral part of
software and software reliability [3].

[Kaur, 2(9): September, 2013] ISSN: 2277-9655
Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2260-2263]

A common constituent of hardware and software
reliability techniques is testing [4]. The results of testing
process are employed in software reliability growth
models to translate defect and/or failure data into
reliability measures [6,7]. Because of all these common
points and differences mentioned, it is wise to classify
studies on assessment of software reliability into two
groups: Software Reliability Modeling, and Software
Testing.

To increase the reliability by preventing
software errors, the focus must be on comprehensive
requirements and a comprehensive testing plan, ensuring
all requirements are tested. Focus also must be on the
maintainability of the software since there will be a
“useful life” phase where sustaining engineering will be
needed. Therefore, to prevent software errors, we must:
1. Start with the requirements, ensuring the product
developed is the one specified, that allrequirements
clearly and accurately specify the final product
functionality.
2. Ensure the code can easily support sustaining
engineering without infusing additionalerrors.

Metric Collection Systems

If reliability is essential, then it has to be
controllable. The necessary controlprocess has to be
based on observations or measurements. Because the raw
materialof these measurements may be defined
differently from one organization to another,a
generalized method of observation or measurement is
needed. Metric collectionsystems are the answers to this
need.
The process of creation of a software metric collection
system is defined by [8] asof six successive steps. These
steps are:
1. Documentation of the software development process
2. Statement of the purpose of the metric collection
system
3. Determination of the metrics required to be collected
in order to reach specific purposes
4. Identification of the data to be collected
5. Definition of the procedures to obtain data from the
organization andprojects
6. Coding of the designed overall system.

Reliability Growth Models

Increasingly software plays a critical part in not
only scientific and business related enterprises, but in
daily life where it runs devices such as cars, phones, and
television sets. Although advances have been made
towards the production of defect free software, any
software required to operate reliably must still undergo
extensive testing and debugging. This can be a costly and

time consuming process, and managers require accurate
information about how software reliability grows as a
result of this process in order to effectively manage their
Budgets and projects.

The effects of this process, by which it is hoped
software is made more reliable, can be modeled through
the use of Software Reliability Growth Models, hereafter
referred to as SRGMs. Ideally, these models provide a
means of characterizing the development process and
enable software reliability practitioners to make
predictions about the expected future reliability of
software under development. Such techniques allow
managers to accurately allocate time, money, and human
resources to a project, and assess when a piece of
software has reached a point where it can be released
with some level of confidence in its reliability.
Unfortunately, these models are often inaccurate.

All of the models examined here have two
parameters. Regardless of how these models where
originally formulated, we will refer to the parameters of
these models as �0 and �1. When necessary, we will
use a superscript to differentiate between parameters of
different models. For example, �E0 will refer to the �0
parameter of the exponential model, and �L1 will refer
to the �1 parameter of the logarithmic model. Standard
practice is to determine the values of these parameters by
fitting the model in question to the available data; we
will examine the various means for doing so in chapter 2.
Once the model has been fitted to the data, it can then be
used to obtain estimates of current stability of the
software and make predictions about the programs future
reliability.

The Exponential Model

The most widely used software reliability
growth model is the exponential model. This is a
stochastic model based on a non-homogeneous Poisson
process (Goel and Okumoto 1979). Originally proposed
by Jelinski and Moranda in (Jelinski and Moranda
1971),many variations have since appeared. The original
JM-exponential model made use of the elapsed wall
clock time when a failure was encountered. A significant
refinement was made by Musa, who restated the model
in terms of CPU execution time allowing for more
accurate predictions. Musa also described a method for
moving between execution time and wall clock time,
making it easier to make predictions in terms of real
world calendars and deadlines (Musa 1975). Latter, Goel
and Okumoto worked to generalize the model, allowing
the initial number of errors in a program to be random
rather than fixed; and permitting errors to be independent
(Goel and Okumoto 1979). Although superior to the
earlier models, it has been shown that the exponential

[Kaur, 2(9): September, 2013] ISSN: 2277-9655
Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2260-2263]

model is not generally the most accurate SRGM
(Malaiya, Karunanithi, and Verma 1992). However, this
model remains popular and widely used.
Theexponential model, in the formulation used here is
also termed Musa’s basic execution model [17]. It
isgiven by:

The Logarithmic Model

The logarithmic model was originally proposed
by Musa and Okumoto in (Musa and Okumoto 1984).
Like theExponential model, it models the failure process
as a non-homogeneous Poisson process. The most
significantdifference between this model and the
exponential is that the logarithmic model assumes that
failure intensitywill decrease exponentially with the
expected number of failures experienced, while the
exponential modelassumes an equal reduction in failure
intensity with each fault uncovered and corrected. In this
sense it canbe viewed as a continuous formulation of the
geometric model (Musa and Okumoto 1984).In (Malaiya,
Karunanithi, and Verma 1992) it was shown that the
logarithmic model was generally moreaccurate than
many other SRGMs. It is relatively simple to use,
although not as widely used as the exponentialmodel.
This may be due in part to the difficulty of obtaining a
concrete interpretation of the model’sparameters. The
logarithmic model takes the form:

Quality and Software Reliability

Software reliability is considered as an
important metric for software quality [1, 3, 9, 5]. In [10],
however, Voas indicates that highly reliable software is
not necessarily a high-quality product, as there exist
situations in which ultra-reliable software systems
showed performance degradations, poor robustness and
lack of maintenance precautions. An approach proposed
to make reliability estimations and predictions parallel to
quality is to organize the testing process in such a way to
make the user requirements tested more strictly with
increased frequency of repetition of revealing input set
[2, 11]. The essence of this technique is that most of the
time the user is not interested in how the problem was

solved; he/she wants to see that the proposed solution is
the one that meets the requirements.
 The problem with the method mentioned above is that
exception handling is not always considered when such
testing scenarios are created [8]. Especially in the case of
safety-critical software, it is difficult to determine the test
cases that lead the exception handling routines to run
[12]. In [14] it is claimed that aspect-oriented
programming improves reliability by its nature providing
direct control over exception handling.
 Another way of improvement of quality and reliability
of software systems is the code-inspection [15]. There
are examples of checklists for improvement of quality of
code-inspection process [13].

Conclusion

Metrics to measure software reliability do exist
and can be used starting in the requirements phase. At
each phase of the development life cycle, metrics can
identify potential areas of problems that may lead to
problems or errors. Finding these areas in the phase they
are developed decreases the cost and prevents potential
ripple effects from the changes, later in the development
life cycle. Metrics used early can aid in detection and
correction of requirement faults that will lead to
prevention of errors later in the life cycle. We also have
examined the exponential and logarithmic models. The
results on the logarithmic model are more difficult to
interpret.

References

[1] “IEEE Std 982.2-1988, IEEE Guide for the Use
of IEEE Standard Dictionary ofMeasures to
Produce Reliable Software”, 1998

[2] L. Rosenberg, T. Hammer, J. Shaw, “Software
Metrics
andReliability”,http://satc.gsfc.nasa.gov/suppor
t/ISSRE_NOV98/software_metrics_and_reliabi
lity.htmlLast Date Accessed: 25.06.2013

[3] “MIL-HDBK-338B, Electronic Reliability
Design Handbook”, US DoD

[4] J. D. Musa, “A Theory of Software Reliability
and Its Applications”, September1975, IEEE
Transactions on Software Engineering,
Volume: SE-1, No: 3, pp.312-327

[5] A.L. Goel, “Software Reliability Models:
Assumptions, Limitations, andApplicability”,
December 1975, IEEE Transactions on
Software Engineering, Volume: SE-11 No: 12,
pp. 1411-1423

[6] W. W. Everett, “Software Component
Reliability Analysis”, 1995,
“SoftwareReliability and Testing”, Los

[Kaur, 2(9): September, 2013] ISSN: 2277-9655
Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2260-2263]

Alamitos, California, IEEE Computer
SocietyPress, pp.45-46

[7] B. Littlewoods, “Software Reliability”, 1987,
Blackwell Scientific Publications

[8] “Creating a Metrics Program”, Software
Productivity Center Inc.,
http://spc.ca/resources/metrics/Last Date
Accessed: 25.06.2013

[9] M. Şahinoğlu, “Compound-Poisson Software
Reliability Model”, July 1992,IEEE
Transactions on Software Engineering,
Volume: 18 Issue: 7, pp. 624-630

[10] J. Voas, “Assuring Software Quality
Assurance”, May-June 2003, IEEESoftware,
Volume: 20 Issue: 3, pp. 48-49

[11] R. L. Glass, “Defining Quality Intuitively”,
May-June 1998, IEEE Software, pp.103-107

[12] J. Viega, J. Voas, “Can Aspect-Oriented
Programming Lead to More Reliable
Software?” November-December 2000, IEEE
Software, pp. 19-21

[13] J. R. de Almeida Jr., J. B. Camargo Jr., B. A.
Basseto, S. M. Paz, “BestPractices in Code
Inspection for Safety-Critical Software”, May-
June 2003,IEEE Software, Volume: 20 Issue: 3,
pp. 56-63

[14] R. Laddad, “Aspect-Oriented Programming
Will Improve Quality”, November-December
2003, IEEE Software, pp. 90, 92

[15] J. Barnard, A. Price, “Managing Code
Inspection Information”, March 1994,IEEE
Software, Volume: 11 Issue: 2, pp. 59 -69

